Estuarine Sedimentation

Andy Killick August 2017

Gavin Lawson

Estuarine Sedimentation

Sedimentation controlled by;

- ☐ Sediment supply (2 main sources)
- Bottom morphology
- Hydrodynamics

Basics: Sediment Grain Size

Fragment	Size (Intermediate Diameter)
Clay	< 4 µm
	0.004 mm (4 μm)
Silt	Medium (0.016-0.03 mm)
	0.062 mm (62 μm)
Sand	Medium (0.25-0.50 mm)
	2 mm
Granule	Very Fine Pebble
	4 mm
Pebble	Medium (8-16 mm)
	64 mm
Cobble	
	256 mm
Boulder	> 25.6 cm

Basics: Sediment Transport

Solution – ionic species in water (dissolved load) irrespective of fluid flow. Comprises much of the pollutants or nutrients.

Suspension – turbulence forces continuously exceed gravitational forces on particle. More & coarser grains near boundary with highest turbulence. 90% of river sediment transported in suspension – mostly fine sand & smaller. Includes the wash load.

Saltation – turbulence generates drag & lift forces similar in magnitude to particle weight. Saltation causes erosion and entrainment

Fluid Threshold (Impact)

Creep (Reptation) – low fluid velocity, particles roll downstream.

Comprises coarser material in transport and is referred to as bedload (<10%). Important geomorphic agent.

Estuarine Sedimentation: Delta

Coarser sediment deposited proximally and finer sediment more distally with respect to the fluvial provenance

Estuarine Sedimentation: Delta

Bed load – most pebbles & sand deposited in fluvial channels

Suspended load – dropped due to reduced velocity on encountering 'stillwater'. Grainsize sorting- coarse material dropped proximally & finer distally

Closed mouth – clay material settles out in low energy parts of estuary. Wash and Dissolved loads may adsorb on particles and flocculates, becoming part of the sediment profile. This could enhance biogenesis – eutrophication

Open mouth – with strong fluvial flow much of the clay (suspended) and wash load will be exported to sea, ultimately being deposited on the shelf.

Tidal Dynamics: The opposing forces Sediment

Fresh sediment
water Water Surface

Salt water

Bottom

Salt Wedge Estuaries – Strong fluvial Component in deeper estuaries

Partially Stratified Estuaries – typical of shallower wider estuaries. Turbulence on interfaces partially mixes the column

Vertically Homogeneous Estuaries – typical of estuaries with large Width/Depth ratio. Bottom shear mixes the column. Tend to be tide dominated.

Tidal Prism = volume of water leaving estuary on ebb, or mean difference in high and low). If the prism is a significant part of the estuary volume (i.e. in shallow, small estuaries) then much of the pollutants and sediment is removed

Tidal Dynamics: Marine

The more symmetrical tidal cycle of the marine environment does not apply in most estuaries

Tidal Dynamics: Estuarine

(Modified from Brown & Davies, 2007)

Tidal Dynamics: Estuarine

Variation in amount of sediment and grain size as function of current velocity

Tidal Dynamics: Estuarine

The self-correcting mechanism of a deeper mean water depth on the ebb tide has been thwarted by the introduction of a rock weir/ sewerage pipe

Zandvlei: Before

Fresh water
Water Surface
Salt water wedge
Bottom

Salt Wedge Estuary to Partially Stratified estuary?

Tidal Prism Larger?

If the prism is a significant part of the estuary volume (i.e. in shallow estuaries) then much of the pollutants and sediment is removed

Zandvlei: Now

Source

Flood tide

Fresh

Increased water depth

= higher velocity

= large sediment import

Reduced tidal Prism

Turbulence, scouring & entrainment

Zandvlei: Now

Source

Slack

Intermediate water depth velocity below threshold = deposition

Fresh

No creep or saltation.

Some sediment even falls out of suspension

Zandvlei: Now

& entrainment

below the weir

Source

grain

entrainment

trap

Ebb tide

Fresh

water

Reducing water depth

- = reduced velocity
- = less and only finer sediment entrained
- = limited sediment export

The Weir on the ebb tide: Mostly laminar flow above and turbulent flow below

Andy Killick August 2017